Измерители магнитной индукции ими-м. Ими-м измеритель магнитной индукции Назначение и область применения

Измеритель магнитной индукции Ш1-9 (Ш19, Ш1 9)
Переносной прибор, предназначенный для измерения индукции постоянных полей магнитов, электромагнитов и соленоидов с высокой точностью в лабораторных и цеховых условиях.

Диапазон измерения: от 25 до 2500 мТл.

Измерители магнитной индукции Ш1-9 представляют собой переносной прибор, предназначенный для измерения индукции постоянных полей магнитов, электромагнитов и соленоидов с высокой точностью в лабораторных и цеховых условиях.

Рабочие условия эксплуатации прибора Измеритель магнитной индукции Ш1-9: температура окружающей среды от 278 до 313 К (от 5 до 40° С); относительная влажность воздуха до 98% при температуре 298 К (25° С); атмосферное давление от 60 до 106 кПа (от 450 до 800 мм рт. ст.); напряжение питающей сети (220±22) В, частотой (50±0,5) Гц.

Диапазон измерения магнитной индукции постоянных магнитных полей - от 25 до 2500 мТл в межполюсных зазорах постоянных магнитов и электромагнитов. Весь диапазон измеряемых индукций перекрывается пятью сменными преобразователями. Пределы измерения магнитной индукции для каждого преобразователя с учетом перекрытия и запаса по краям диапазона приведены в табл. 1.

Таблица 1

Диапазон измерения магнитной индукции полей соленоидов от 57 до 700 мТл. Весь диапазон измеряемых индукций перекрывается двумя сменными преобразователями. Пределы измерения для каждого преобразователя с учетом перекрытия и запаса по краям диапазона приведены в табл. 2.

Таблица 2

Прибор Ш1-9 имеет встроенный цифровой индикатор отсчета вели чины измеряемого магнитного поля в единицах магнитной индукции, а также выход для подключения внешнего частотомера. При этом разность результатов измерения частоты встроенным цифровым индикатором и частотомером не превышает ±(0,003+0,1/Визм) % где Визм - показания цифрового индикатора.

Прибор Ш1-9 имеет встроенный осциллографический индикатор для наблюдения сигнала ЯМР, а также выход для подключения внешнего осциллографа. При этом разность показаний при работе с осциллографом и внутренним индикатором сигнала ЯМР не превышает ±0,003% от измеряемого значения магнитной индукции.

Прибор Ш1-9 обеспечивает измерение магнитной индукции в полях с неоднородностью до 0,05% на 1 см. При этом отношение сигнала к шуму не менее 1,5. Погрешность при измерении магнитной индукции не превышает:

1) ±(0,01 + 0,1/Визм) % при неоднородности магнитного поля не более 0,02 % на 1 см, где Визм - измеряемая магнитная индукция, мТл;

2) ±0,1% при неоднородности магнитного поля в пределах (0,02-0,05)% на 1 см.

Прибор Ш1-9 обеспечивает контроль уровня напряжения высокой частоты, контроль УПТ, тока модуляции и выходного напряжения фазового детектора, а также контроль калибровки цифрового индикатора и установки луча осциллографического индикатора. Максимальная индукция поля модуляции, создаваемого преобразователями, не менее 1 мТл. Прибор Ш1-9 обеспечивает автоматическое поддержание условий ЯМР при изменении магнитной индукции на ±0,05% для значений магнитной индукции от 100 до 700 мТл при неоднородности поля не более 0,02% на 1 см и отношении сигнала к шуму не менее 5. При этом погрешность измерения магнитной индукции не превышает ±0,02%.

Прибор Ш1-9 обеспечивает автоматический поиск сигнала ЯМР при измерении магнитной индукции постоянных магнитных полей от 50 до 500 мТл в межполюсных зазорах постоянных магнитов и электромагнитов при неоднородности поля не более 0,02% на 1 см и отношении сигнала к шуму не менее 5.

Прибор Ш1-9 обеспечивает полуавтоматический поиск сигнала ЯМР при измерении магнитной индукции постоянных магнитных полей от 50 до 500 мТл в межполюсных зазорах постоянных магнитов и электромагнитов. Прибор Ш1-9 обеспечивает на гнездах ФД "┴" управляющее напряжение для системы стабилизации полей электромагнитов не менее плюс 1В и не более минус 1В при нагрузке 1кОм и отношении сигнала к шуму не менее 5.

Значение частоты выходного напряжения на гнезде "5 МГц" равно (5±25·10-6) МГц. Прибор Ш1-9 обеспечивает технические характеристики по истечении времени установления рабочего режима, равного 15 мин. Прибор Ш1-9 допускает непрерывную работу в рабочих условиях в течение 8 ч при сохранении своих технических характеристик. Время непрерывной работы не включает в себя время установления рабочего режима.

Питание прибора Ш1-9 осуществляется от сети переменного тока напряжением (220±22) В, частотой (50±0,5) Гц. Мощность, потребляемая от сети при номинальном напряжении, не более 120 ВА. Габаритные размеры, мм, не более: генератора - 330x223x338; индикатора - 330x183x338; ящика укладочного для генератора - 580x301x446; ящика укладочного для индикатора - 580x301x446; ящика транспортного для генератора -752х532х560; ящика транспортного для индикатора - 752x532x560. Масса, кг, не более: генератора - 13; индикатора - 10; генератора и комплекта ЗИП в транспортном ящике - 70; индикатора в транспортном ящике - 60.

Предназначен для измерения нормальной составляющей магнитной индукции у поверхности полюсов постоянных магнитов, одиночных или собранных в блоки, а также магнитных сепараторов.

Измеритель ИМИ-М применяется на элеваторах, мукомольных, крупяных и комбикормовых предприятиях.

Принцип работы измерителя основан на эффекте Холла. Магнитная индукция измеряемого постоянного магнитного поля в датчике Холла преобразуется в электрический сигнал, который вызывает перемещение стрелки показывающего прибора. Угол отклонения стрелки прямо пропорционален величине индукции магнитного поля. Конструкция измерителя ИМИ-М представляет собой переносной диапазонный прибор с зондом специальной конструкции для измерения индукции магнитного поля. В корпусе установлен показывающий прибор - микроамперметр марки М 1690А. Для защиты от внешних воздействий и удобства измерений преобразователь Холла размещен внутри зонда, выполненного из немагнитного материала. Пластина преобразователя Холла установлена на плоскости тарелки строго по ее центру и закрыта стаканом. Внутри стакана выводы датчика соединены с проводами измерительного кабеля, передающего аналоговые сигналы на измерительную схему, установленную внутри корпуса прибора. Расстояние между пластиной преобразователя Холла и плоскостью полюса магнита равно толщине дна тарелки - 0,6 мм. Тарелка прижата к ручке зонда с помощью гайки. Измерительный кабель зафиксирован внутри зонда крепежным винтом. Камера для установки элементов питания А332 расположена под нижней крыш кой измерителя. Перед началом работы, не включая измеритель, механическим корректором направляют стрелку на нуль. После включения прибора задают рабочий режим (5 мин.), потенциометром «Уст. О» устанавливают нуль измерителя. Переводят переключатель В4 в положение «Контр.» и потенциометром рабочего тока «Уст. тока» выводят стрелку прибора на максимальную отметку шкалы. Выбирают предел измерения. Для этого устанавливают переключатель ВЗ в положение «1000 мТл». Берут зонд и прижимают плоскость гайки к плоскости полюса магнита. Если стрелка прибора установится в диапазоне не более 200 мТл, то измеритель следует переключить на предел «200 мТл». При повышении значения 200 мТл измеритель следует включать на предел «500 мТл».

Технические характеристики.
Диапазон измерения магнитной индукции постоянных магнитных полей, мТл - 0-500.
Предел допускаемого значения основной погрешности измерителя (при температуре 20°С+2°С) на пределах измерения: «200 мТл», «500 мТл», %, не более +2,5.
Предел измерения «1000 мТл» - индикаторный.
Предел допускаемого значения дополнительной погрешности, вызванной отклонением температуры окружающей среды от нормального значения, %, не более 0,5 на 1°С.
Время успокоения подвижной системы измерителя, с, не более – 4.
Время установления рабочего режима измерителя, мин – 5.
Продолжительность непрерывной работы измерителя, мин, не менее – 15.
Источник питания - 3 батарейки А322.
Габаритные размеры, мм - 140x160x100.
Масса, кг, не более - 1,3.

Для измерения магнитной индукции переменного магнит­ного поля применяются преобразователи со стационарными (непо­движными) обмотками. Функция преобразования преобразователя соот­ветствует уравнению (4). Коэффициент преобразования, связываю­щий действующее значение индуктируемой ЭДС с амплитудным значением индукции периодически симметрично меняющегося магнит­ного поля, определяется выражением

(9)

где - коэффициент формы кривой;

- частота переменного маг­нитного поля.

При искаженной форме кривой обычно измеряют сред­нее значение индуктируемой ЭДС
.

Для измерения индукции постоянного магнитного поля могут быть использованы как преобразователи с условно стационарной обмоткой, так и преобразователи с принудительным движением обмотки. В пре­образователях со стационарной обмоткой изменение магнитного по­тока, сцепляющегося с витками обмотки, может происходить в ре­зультате изменения самого измеряемого поля, например при измере­ниях магнитного поля, вызываемого включением какого-то агрегата, или в результате однократного изменения положения самого преоб­разователя - удаления преобразователя из магнитного поля или поворота в поле на 90 или 180°.

Выходным сигналом такого преобразователя является импульс тока или импульс ЭДС, которые возникают при изменении полного магнитного потока. Изменение потока
связано с ЭДС и током как


; (10)

где - полное сопротивление измерительной цепи с учетом сопро­тивления преобразователя;

Q - количество электричества.

В качестве интеграторов используются баллистический гальвано­метр (при интегрировании тока) или магнитоэлектрические, фотогальванометрические и электронные веберметры с операционными усилителями, применяемые для интегрирования ЭДС.

Индукционные преобразователи для измерения параметров маг­нитных полей в воздушном пространстве обычно выполняются в виде измерительных катушек различной формы, начало и конец обмотки которых находятся в одном месте, чтобы не создавались дополнитель­ные контуры за счет подводящих проводов.

в)

a)
б)

Для измерения напряженности магнитного поля при испытании ферромагнитных материалов используются плоские измерительные катушки (рис. 1, а), помещаемые на поверхности испытуемого образца; при этом измеренная в воздухе напряженность поля

прини­мается равной напряженности поля на поверхности образца.

Для измерения магнитной индукции и напряженности неоднород­ных магнитных полей целесообразно использовать шаровые индук­ционные преобразователи (рис.1, б). Магнитный

поток, сцепляю­щийся с такой катушкой, равен

, (11)

где В 0 - индукция в центре преобразователя;

r - радиус сферы;

w - число витков на единицу длины оси zz ", которая должна совпадать с вектором В 0 .

Для измерения МДС используются индукционные преобразова­тели, называемые магнитными потенциалометрами, обычно выполняе­мые в виде равнoмерной обмотки на гибком изоляционном каркасе. Обмотка выполняется с четным числом слоев так, чтобы выводы нахо­дились в середине обмотки (рис. 1, в). Магнитный потенциалометр помещается в магнитное поле таким образом, чтобы его концы находи­лись в точках А и В, между которыми измеряется МДС. Магнитный поток, сцепляющийся с витками потенциалометра, равен


(12)

Порог чувствительности средств измерений со стационарными индукционными преобразователями определяется главным образом механическими помехами (вибрации, сейсмические и акустические воз­действия), которые приводят к колебаниям преобразователя и наве­дению дополнительной ЭДС, а также дрейфом интегрирующего выход­ного преобразователя. Наиболее чувствительные магнитоэлектрические веберметры имеют цену деления 5*10Вб, а фотогальванометрические веберметры - 4*10 Вб.

Индукционные преобразователи с вращающимися или вибрирую­щими чувствительными элементами имеют функции преобразования, которым соответствуют уравнения (5 – 7).

На (рис. 2, а ) показана схема -преобразователя (так называе­мого измерительного генератора), который состоит из рамки 1 с числом витков и вращается при помощи двигателя 2 c угловой частотой

; (13)

где - угол между магнитной осью преобразователя и поперечной компонентой

вектора магнитной индукции
,
где - угол между осью вращения преобразователя и вектором.

Рис.2.

При " = 1 из уравнения (5) получаем


; (14)

Учитывая, что
имеем

Коэффициент преобразования преобразователя

(16)

где Е т - амплитудное значение генерируемой ЭДС.

Преобразователи с вращающейся катушкой отличаются высокой чувствительностью (до 300 В/Тл). Порог чувствительности ограничен уровнем шума коллектора и наводками от электродвигателя и цепи питания. Для снижения порога чувствительности используются бес­коллекторные токосъемы, а вращение генератора осуществляется через редуктор, с тем чтобы частота выходного сигнала отличалась от часто­ты сети и не была кратной частоте вращения двигателя.

На (рис. 2, б) изображен четногармонический преобразователь. В качестве вращающегося элемента используется короткозамкнутое кольцо 1, которое вращается двигателем 2 в неподвижной обмотке 3. Магнитное поле, создаваемое током, индуктированным в короткозамкнутом кольце при его вращении во внешнем поле с индукцией В 0 , изменяется с одинаковой частотой как по модулю, так и по направле­нию. Вследствие этого проекция вектора магнитной индукции поля на ось неподвижной обмотки, совпадающей с вектором измеряемой магнитной индукции В, будет изменяться пропорционально
. Суммарный поток, пронизывающий неподвижную катушку (активным сопротивлением кольца пренебрегаем), равен

и ЭДС, наводимая в неподвижной обмотке,

; (18)

Разнесение частот напряжения питания и полезного сигнала позво­ляет отфильтровать

наводки и создать на рассмотренном принципе индукционные преобразователи с порогом

чувствительности
Тл.

На (рис.2, в) показан S-преобразователь с радиальными коле­баниями, возбуждаемыми электрострикционным вибратором. Вибра­тором является тонкостенный цилиндр 1 из сегнетокерамики PbZrO 3 с металлизированными внутренней 2 и внешней 3 поверхностями, куда подводится переменное управляющее напряжение U f . Внутренний электрод имеет продольный разрез 4, а внешний представляет собой короткозамкнутый виток, на котором находится вторичная многовитковая обмотка 5. Вследствие радиальных электрострикционных колебаний периодически изменяется площадь поперечного сечения короткозамкнутого витка, и при наличии постоянного магнитного поля, вектор магнитной индукции которого направлен по оси цилиндра, в наруж­ном короткозамкнутом витке возникает переменный ток, который вы­зывает во вторичной обмотке ЭДС, пропорциональную индукции .Частота электрострикционных колебаний и выходной ЭДС равна удво­енной частоте управляющего напряжения.

Изделие зарегистрировано в Госреестре под номером 23633-02

Назначение и область применения

Измеритель магнитной индукции ИМИ-М предназначен для измерения нормальной составляющей магнитной индукции у поверхности полюсов постоянных магнитов, одиночных или собранных в блоки магнитных сепараторов для промышленности хлебопродуктов.

Условия эксплуатации:

Измерители предназначены для работы при температуре окружающего воздуха от +5 °С до + 40 °С и относительной влажности воздуха (65 ± 15)%.

Описание

По своей конструкции измеритель магнитной индукции представляет собой переносной многодиапазонный прибор с магнитоэлектрическим механизмом.

Принцип действия измерителя магнитной индукции основан на эффекте Холла. Для защиты от внешних воздействий и удобства измерений преобразователь Холла размещен внутри зонда, выполненного из немагнитного материала.

Расстояние пластины преобразователя Холла от наружного торца зонда определяется конструкцией и равно 0,6 мм.

Электрическая схема измерителя магнитной индукции вместе с блоком питания смонтирована внутри металлического корпуса. На верхней крышке корпуса установлен показывающий прибор - микроамперметр М 1690 А.

На корпус измерителя магнитной индукции выведены органы настройки и регулировки. Камера для установки элементов питания расположена под нижней крышкой измерителя.

Основные технические характеристики

Измеритель магнитной индукции обеспечивает:

Диапазон измерения магнитной индукции постоянных магнитных полей 0-1000 мТл;

Предел допускаемого значения основной погрешности измерителя при температуре +20°С ± 2°С не более 2,5% на пределах «200 мТл» и «500 мТл» и не более 4% на пределе «1000 мТл»,

Предел допускаемого значения дополнительной погрешности измерителя, вызванной отклонением температуры окружающей среды от нормального значения, не более 4 % на Ю°С.

Время успокоения подвижной части измерителя Погрешность установки нуля измерителя Время установки рабочего режима измерителя Продолжительность непрерывной работы измерителя Габаритные размеры: Масса измерителя

Знак утверждения типа

не более 4 с. ± 0,5 дел. 5 мин. не менее 15 мин. 140x160x100 мм.

не более 1,3 кг.

Знак утверждения типа наносится на титульный лист паспорта и руководства по эксплуатации измерителя магнитной индукции ИМИ-М над наименованием предприятия-изготовителя типографским способом и на лицевую панель прибора рядом с обозначением типа шелкографией или гравировкой. Формы и размеры знака по ПР 50.2.009-94.

Комплектность

В комплект поставки входят:

Измеритель с зондом

Паспорт и руководство по эксплуатации

1 шт.; 1 шт.

Поверка

Поверка измерителя магнитной индукции ИМИ-М производится в соответствии с рекомендацией МИ 2185 «ГСИ. Тесламетры постоянных магнитных полей в диапазоне 0,01.. .2 Тл. Методика поверки».

Межповерочный интервал - 12 месяцев.

Тесламетр - магнитоизмерительный прибор для измерения магнитной индукции, шкала которого градуирована в единицах магнитной индукции - теслах.

Магнитоизмерительным преобразователем в рассматриваемом приборе является гальваномагнитный преобразователь Холла, в котором под действием магнитного поля возникает ЭДС.

К гальваномагнитным относится также магниторезистивный преобразователь, в котором используется изменение его электрического сопротивления в магнитном поле.

Принцип действия тесламетра с преобразователем Холла поясняется рис. 10-3, где ПХ - преобразователь Холла; У - усилитель.

Преобразователь представляет собой пластину из полупроводника, по которой протекает ток При помещении пластины в магнитное поле, вектор магнитной индукции В которого перпендикулярен плоскости пластины, на боковых гранях ее возникает разность потенциалов - ЭДС Холла

где С - постоянная, зависящая от свойств материала и размеров пластины; I - сила тока; В - магнитная индукция.

После усиления ЭДС Холла измеряется компенсатором постоянного тока или милливольтметром шкала которого может быть градуирована в единицах магнитного потока при условии постоянства силы тока.

Тесламетры с преобразователем Холла просты в эксплуатации, позволяют измерять магнитную индукцию или напряженность постоянных, переменных (в широком диапазоне частот) и импульсных магнитных полей. Преобразователи Холла имеют малые размеры, что позволяет проводить измерение индукции в малых зазорах.

Выпускаемые промышленностью тесламетры с преобразователем Холла имеют более сложные схемы. У серийных тесламетров с преобразователями Холла верхние пределы измерений от до основная приведенная погрешность

Ферромодуляционные тесламетры.

В них используются ферромодуляционные преобразователи (феррозонды), принцип работы которых основан на особенностях изменения магнитного состояния ферромагнитного сердечника при одновременном воздействии на него переменного и постоянного магнитных полей (либо двух переменных полей различных частот) и явления электромагнитной индукции.

Существует много разновидностей ферромодуляционных преобразователей. Наиболее распространенным видом является дифференциальный ферромодуляционный преобразователь.

На рис. 10-4 приведена схема ферромодуляционного тесламетра, в котором имеет место уравновешивающее

Рис. 10-3. Схема тесламетра с преобразователем Холла

Рис. 10-4. Схема ферромодуляционного тесламетра

преобразование с компенсацией (уравновешиванием) магнитной индукции (напряженности) измеряемого магнитного поля.

Дифференциальный ферромодуляционный преобразозатель ФМП состоит из двух идентичных по размерам и свойствам пермаллоевых сердечников С, одинаковых, включенных встречно, обмоток возбуждения которые питаются переменным током от генератора Г.

Оба сердечника охватывает индикаторная обмотка При отсутствии постоянного поля ЭДС на зажимах индикаторной обмотки равна нулю, так как потоки, создаваемые обмотками одинаковы и направлены встречно. Если на переменное поле (поле возбуждения) наложить постоянное поле (измеряемое) вектор которого параллелен оси сердечника, то кривая переменной составляющей индукции В станет несимметричной относительно оси времени, т. е. в составе этой кривой наряду с нечетными появятся четные гармоники, причем степень асимметрии зависит от значения Значение ЭДС четных гармоник, индуцированной в индикаторной обмотке, в частности ЭДС второй гармоники, зависит от значения напряженности или магнитной индукции постоянного (измеряемого) магнитного поля.

Электродвижущая сила второй гармоники является линейной функцией составляющей магнитной индукции (или напряженности) постоянного магнитного поля, параллельной оси преобразователя, т. е.

где и - коэффициенты преобразования, зависящие от параметров ферромодуляционного преобразователя, частоты и значения напряженности поля возбуждения; - измеряемая магнитная индукция; - напряженность магнитного поля.

Выходной сигнал индикаторной обмотки (ЭДС четных гармоник) поступает на вход избирательного усилителя усиливающего вторую гармонику, затем синхронный выпрямитель синхронизируемый генератором Г. Синхронный выпрямитель преобразует ЭДС второй гармоники в пропорциональный ей, а следовательно, и измеряемой постоянный ток который протекает через обмотку обратной связи размещаемую на ферромодуляционном преобразователе и создающую компенсирующее поле с индукцией Благодаря уравновешивающему преобразованию устанавливается такая сила тока чтобы поле с индукцией стало равным по значению и обратным по направлению измеряемому с индукцией т. е. происходит автоматическая компенсация измеряемого поля компенсационным Миллиамперметр, включенный в цепь обмотки обратной связи, градуируют в единицах измеряемой величины - теслах или амперах на метр.

Приборы с ферромодуляционными преобразователями обладают высокой чувствительностью, высокой точностью измерения, позволяют вести непрерывные измерения, что обусловило их широкое распространение (в частности, для измерения магнитного поля Земли).

Ферромодуляционные тесламетры используют для измерения магнитной индукции (или напряженности магнитного поля) в малых постоянных и низкочастотных переменных магнитных полях.

Диапазон измерений такими приборами лежит в пределах от до погрешность измерения от 1,0 до 5 %.

В настоящее время находят все более широкое применение цифровые ферромодуляционные тесламетры, которые имеют повышенную точность и быстродействие.

Ядерно-резонансные тесламетры.

В этих тесламетрах используется разновидность квантового магнитоизмерительного преобразователя. Квантовыми называют магнитоизмерительные преобразователи, действие которых основано на взаимодействии микрочастиц (атомов, ядер атомов, электронов) с магнитным полем.

Существует несколько разновидностей квантовых преобразователей. Рассмотрим принцип действия одного из них - ядерно-резонансного преобразователя, позволяющего измерять магнитную индукцию с высокой точностью.

Ядерно-резонансный преобразователь действует следующим образом. Ядра атомов вещества, обладающие не только моментом количества движения, но и магнитным моментом, при помещении во внешнее магнитное поле начинают прецессировать вокруг вектора магнитной индукции внешнего поля.

Частота прецессии ядер атомов вещества связана с магнитной индукцией В внешнего поля соотношением

где у - гиромагнитное отношение (отношение магнитного момента ядра атома к моменту количества движения).

Следовательно, измерив частоту прецессии, можно определить значение магнитной индукции. Гиромагнитное отношение определено для ядер атомов некоторых веществ с высокой точностью (например, для ядер водорода погрешность составляет Измерение частоты может быть выполнено с погрешностью, не превышающей Таким образом, рассматриваемый преобразователь может обеспечить измерение магнитной индукции с высокой точностью.

Для измерения частоты прецессии используют различные методы. Один из них основан на явлении ядерного магнитного резонанса.

Упрощенная структурная схема прибора, в котором использовано явление ядерного магнитного резонанса, приведена на рис. 10-5, где ЯРП - ядсрно-резонансный преобразователь, состоящий из ампулы Л с рабочим веществом (например, водный раствор и охватывающей ее катушки - генератор высокой частоты; - генератор низкой частоты; - модуляционная катушка; В - выпрямитель; - электронный осциллограф; - частотомер.

Если на измеряемое постоянное поле наложить под углом 90° переменное поле частоту которого можно плавно изменять, то при совпадении частоты прецессии с частотой переменного поля будет наблюдаться явление ядерного магнитного резонанса - амплитуда прецессии возрастет и достигнет максимального значения. Увеличение амплитуды прецессии сопровождается поглощением ядрами вещества части энергии высокочастотного поля, что приводит к изменению добротности катушки, а следовательно, и к изменению напряжения на ее концах (катушка К является элементом колебательного контура генератора Для того чтобы иметь возможность наблюдать это изменение на экране осциллографа, необходимо создать условия для его периодического повторения, что достигается путем модуляции измеряемой магнитной индукции с помощью катушки питаемой током низкой частоты от генератора Момент резонанса (равенство частот прецессии и напряжения генератора может быть зафиксировано с помощью электронного осциллографа, на

Рис. 10-5. Схема ядерно-резонансиого тесламетра

вертикальный вход которого подают после выпрямления напряжение с катушки на горизонтальный - напряжение модуляции (напряжение ГНЧ). Резонансная кривая наблюдается на экране осциллографа два раза за период модуляции. Частота прецессии определяется путем измерения частоты генератора ГВЧ в момент резонанса.

Ядерно-резонансные тесламетры имеют диапазон измерений основная приведенная погрешность для различных приборов находится в пределах

Ядерно-резонансные тесламетры в сочетании со специальными преобразователями силы тока в напряженность магнитного поля применяют для измерения больших токов с высокой точностью.

В последние годы для создания магнитоизмерительных приборов используют явление сверхпроводимости, которое в сочетании с эффектами Мейснера, Джозефсона и др. позволяет создавать приборы уникальной чувствительности, высокой точности и быстродействия.

Рассмотрим принцип действия одного из таких приборов. Магнитоизмерительный преобразователь представляет собой сплошной цилиндр из сверхпроводящего материала, на который намотана обмотка. На цилиндре, помещенном в измеряемое магнитное поле, имеется нагреватель, который обеспечивает периодический, с частотой 1 МГц, нагрев и охлаждение его до температуры больше или меньше критической для данного сверхпроводящего материала. Это приводит к периодическому выталкиванию измеряемого магнитного потока (эффект Мейснера) из объема цилиндра, а следовательно, и изменению потокосцепления его с обмоткой. В результате в обмотке возникает ЭДС, пропорциональная частоте тока нагревателя, числу витков катушки, сечению цилиндра и напряженности измеряемого магнитного поля (измеряется составляющая поля, совпадающая с направлением оси цилиндра).

Прибор состоит из преобразователя, криостата и электронного измерительного устройства, служащего для выделения и измерения ЭДС.

С помощью сверхпроводниковых тесламетров были измерены параметры магнитного поля биотоков сердца и мозга человека

Характеристики серийно выпускаемых тесламетров приведены в табл. 15-9.

Основные направления развития магнитоизмерительных приборов: повышение точности, чувствительности и расширение

функциональных возможностей путем применения новых физических явлений, новых материалов и технологий изготовления магнитоизмерительных преобразователей, а также путем использования средств вычислительной техники и т. п.

 
Статьи по теме:
Тарифы
В последнее время все чаще операторы мобильной связи в свои сим-карты уже изначально зашивают все настройки и абоненту в последствии не требуется производить дополнительные действия по ручной настройке, к примеру интернета. Настроить интернет Теле2Сложно!
Как найти в компьютере облако
В последнее время бурно развиваются не только компьютерные, но и мобильные технологии. В связи с этим очень остро встал вопрос безопасного хранения относительно больших объемов информации. И именно для этого многие IT-корпорации предлагают пользователям л
Функции работы со строками запрос 1с
В этой статье мы хотим обсудить с Вами все функции языка запросов 1с , а также конструкции языка запросов . Чем же отличается функция от конструкции? Функция вызывается со скобками и возможными параметрами в них, а конструкция пишется без скобок. Безуслов
Почему планшет часто перезагружается сам по себе
04.06.2018 А знаете ли вы? Если поставить Жан-Клода Ван Дамма на заставку рабочего стола, можно обойтись без антивируса. А знаете ли вы? Костюм Тони Старка оснащен всеми операцинными системами во вселенной... А знаете ли вы? Чак Норис однажды защит